

Photovoltaic support foot positioning diagram

What is the tilt angle of a photovoltaic support system?

The comparison of the mode shapes of tracking photovoltaic support system measured by the FM and simulated by the FE (tilt angle = 30°). The modal test results indicated that the natural vibration frequencies of the structure remains relatively constant as the tilt angle increases.

How stiff is a tracking photovoltaic support system?

Because the support structure of the tracking photovoltaic support system has a long extension length and the components are D-shaped hollow steel pipes, the overall stiffness of the structure was found to be low, and the first three natural frequencies were between 2.934 and 4.921.

What are the dynamic characteristics of the tracking photovoltaic support system?

Through processing and analyzing the measured modal data of the tracking photovoltaic support system with Donghua software, the dynamic characteristic parameters of the tracking photovoltaic support system could be obtained, including frequencies, vibration modes and damping ratio.

What are the dynamic characteristics of photovoltaic support systems?

Key findings are as follows. Dynamic characteristics of tracking photovoltaic support systems obtained through field modal testing at various inclinations, revealing three torsional modes within the 2.9-5.0 Hz frequency range, accompanied by relatively small modal damping ratios ranging from 1.07 % to 2.99 %.

Does vertical elevation affect the vibration frequency of a photovoltaic support system?

However, from the results of the field modal analysis, the natural vibration frequency of each step would slightly increase with the increase in the vertical elevation, and the corresponding vibration mode diagram of each step of the tracking photovoltaic support system under different tilt angles was generally similar.

Why is a photovoltaic support system prone to torsional vibrations?

Due to the lower natural frequencies and torsional stiffness, the system is susceptible to significant torsional vibrations induced by wind. Currently, most existing literature on tracking photovoltaic support systems mainly focuses on wind tunnel experiments and numerical simulations regarding wind pressure and pulsation characteristics.

Photovoltaic support foot positioning diagram

Contact us for free full report

Web: https://publishers-right.eu/contact-us/ Email: energystorage2000@gmail.com WhatsApp: 8613816583346

